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Abstract

There is an increasing requirement throughout LLNL for nondestructive
evaluation using X-ray computed tomography (CT). In many cases, restrictions on
data acquisition time, imaging geometry, and budgets make it unfeasible to acquire
projection data over enough views to achieve desired spatial resolution using
conventional CT methods. In particular, conventional CT methods are non-
iterative algorithms that have the advantage of low computational effort, but they
are not sufficiently adaptable to incorporate prior information or non-Gaussian
statistics. Most currently existing iterative tomography algorithms are based on
methods that are time consuming because they converge very slowly, if at all. The
goal of our work was to develop a set of limited data CT reconstruction tools and
then demonstrate their usefulness by applying them to a variety of problems of
interest to LLNL. In this project we continued our development of reconstruction
tools and we have demonstrated their effectiveness on several important problems.

1. Introduction:

Tomography is used throughout the laboratory to noninvasively investigate the

composition and structure of objects. Conventional CT algorithms have the



advantage that are noniterative---hence they are computationally efficient---but they
suffer from a lack of flexibility in that they can’t incorporate prior information about
the solution, nor can they use other than the squared error criterion to fit the data.
Because the image recovery problem associated with most tomography applications
is ill-posed, and this is particularly true for limited data situations, all possible prior
information about the unknown object must be utilized in order to produce high-
quality images. Furthermore, although least-squares (i.e. minimizing a sum of
squares error function that measures the mismatch between the data and the model)
is appropriate if the data has a Gaussian distribution with known constant variance,
using it when the data has a non-Gaussian distribution can seriously degrade the
quality of reconstructed images. An example is counting problems (e.g., emission
tomography) where the data consists of particle or photon counts that typically have
a Poisson distribution. Another example is outlier-corrupted data in which the
distribution function is not known exactly, but it is known that the data pixels are
subject to outliers that occur infrequently, but greatly distort those pixels where they
occur. These outliers result from a variety of problems including a few bad detectors
in a CCD array, improper assumptions about the model, or “hits” from extraneous
radiation or particles. Outliers have highly deleterious effects on the reconstructed

image when squared error is used.

The problems our techniques have been designed to handle can be described as
follows. First there is a linear equation that models the relationship of the unknown
to the data

y=Ax (1)
where the vector X represents the unknown image we wish to reconstruct, A is a
matrix that represents the effects of geometry, absorption, etc. that lead to the

expected data y if X were the true image. The actual observed data is y, and the



estimate of the true image is obtained by using an optimization algorithm to adjust
X so that ¥y is a best fit to the actual data according to some criterion function, say
VACAD ()
where the choice of the criterion function, as we noted earlier, depends on the
statistics of y. Consequently, our reconstruction problem involves minimizing
with respect to X a function of the form
L(y,%) = f(y,A%) (3)
This function usually is a negative log-likelihood function, so the image we recover
is the maximum likelihood estimate of the unknown [1]. Because our problems
typically are ill-posed, we add penalty parameters and impose prior constraints on

x, this leads to the minimization problem:

k= Argmin{L(y.x)+ 7l + 20k} @

Here we are recovering a constrained penalized maximum likelihood estimate: the
extra Euclidean norm and/or absolute value norm terms penalize large X, and the
parameters 77 and A determine the degree of penalty. It is also possible to include
terms that penalize derivatives of x, thereby imposing a larger penalty on its higher
frequency components. If outliers are present, we do not use the maximum
likelihood approach directly: instead, we select f(y,y) to make the reconstructed
image less sensitive to outliers. We give an example in the next section. The subset
S represents upper and lower bounds on the components of the image vector X.
These bounds provide crucial prior information about the solution and can greatly
improve the quality of the recovered image. Because the unknown image usually
represents nonnegative quantities such as absorption or energy, the most common
constraint is that all of the components of X be nonnegative. Other constraints on

subsets of pixels can result from the known extent of the object and regions of



known voids or occlusions.

The optimization problem we have described above is a difficult one for several
reasons. The most obvious is its very high dimensionality: both X and ¥y
frequently have 106 or more components. Another reason is the bounds that we
have imposed on the solution require a constrained optimization technique. Many
iterative non-linear minimization algorithms require storing an inverse of the
matrix of second partials of L(y,X) with respect to the components of x. This is
clearly not possible for our problems because a 100 by 106 matrix is too large to store.
The answer for unconstrained problems is either the conjugate gradient algorithm
or the limited memory quasi-Newton algorithm; both of these algorithms in effect
store low-order approximations of the second-order information that is provided by

the inverse matrix of second partials.

For bound-constrained problems conventional optimization techniques [2-4] usually
allow only one variable per iteration to attain a bound, so for very large problems
these techniques are very slow because they spend too much time finding bounds.
Consequently, standard iterative tomography algorithms [5-6] are based on methods
that can attain multiple bounds in an iteration; unfortunately, however, they are
essentially steepest descent techniques that use no second order information about
L(y.x) whatever, so they converge very slowly, if at all.

IL. Progress:

IL.a. Optimization Algorithm Development

Our ability to solve difficult tomography problems is the result of two specialized
optimization algorithms that we have developed. The first is an extension of the
conjugate gradient algorithm that incorporates bound constraints on the variables; it

is described in [7]. This constrained conjugate gradient (CCG) algorithm is unique in



that it incorporates a bending linesearch that permits multiple bounds to be attained
during a single iteration. It has previously been applied with great success to a
variety of practical problems. These are described in Refs. [8-15]. The second is a
limited-memory quasi-Newton algorithm that permits upper and lower bounds on
the variables. We completed implementing our quasi-Newton (QN) algorithm as
part of this LDRD project; it is based on the derivations in [16]. The very large
dimensions of A typically make calculating the matrix-vector product of Eq. 1 the
most computationally expensive part of finding a solution, and which algorithm is

most appropriate depends on the structure of A.

In particular, the value of L(y,X) and a related directional derivative must be
calculated at each new sub-iteration within the bending linesearch. Completely
recalculating Eq. 1 each time is very expensive, but in some cases a different
approach is possible. This is because it is only necessary to recalculate that part of Eq.
1 corresponding to components of X that have either attained or left bounds during
a linesearch sub-iteration. For example, if only one component of X has changed its
bound status, then it is only necessary to compute one scalar-vector product---the
product of that component with its corresponding column of A ---rather than the
entire vector-matrix product shown in Eq. 1. If A has many columns, this saves

considerable effort.

If the columns of A are readily available, then CCG appears to be the best choice.
However, in many tomography problems Eq. 1 is not computed in the usual
manner. Often A is a discretized version of the forward projection operator;
therefore, it represents a set of line integrals, and it is very sparse. Consequently, Eq.
1 is computed via a rule that only calculates the line integrals and wastes no time on

the large portions of A consisting of zeros. Another example is where A is the



kernel of a shift-invariant blurring function; in this case using a convolution
algorithm based on the fast Fourier transform (FFT) is by far the most efficient
method for computing Eq. 1. In some of our future work on the Advanced
Hydrotest Facility (AHF) [17] we anticipate that A will be of the form A =BC, where
C is a projection matrix and B is a blur kernel that represents the effects of detector
and source geometries. In this case both a sparse matrix rule and an FFT
convolution algorithm are required. In all of the cases discussed in this paragraph,
the programming effort required to calculate individual columns of A is
considerable, and often is not worthwhile. The advantage of the QN method is that
bending is used first on a low-order quadratic approximation to L(y,X) to produce a
direction for the linesearch. This greatly reduces the need for bending during the
linesearch itself, yet it still permits the algorithm to attain multiple bounds during
an iteration. In the QN algorithm we have included the options both to perform
additional bending in the linesearch if the columns of A are available, and to

perform no bending in the linesearch if they are not.
ILb Robust Tomography Algorithms.

As part of this project we completed work on and demonstrated the usefulness of

our robust tomography technique. The squared error function is

N
faH=Yri=rr (5)
i=1

Where the residual vector r=y—¥ is one indication of mismatch between the
observed data and the model of the data. If Eq. 5 is the criterion function in Egs. 2-3,
then the reconstructed image defined in Eq. 4 will be very sensitive to outliers. For

example, suppose N =10,000 in Eq. 5, and the magnitude of a typical component of



the residual is 1.0, except for one component r, whose value is 100.0. Then- 7,
contributes roughly as much to the squared error as do all of the other components
combined, and the minimization algorithm will try very hard to match the outlier
V. at the expense of all of the other data points. The solution is to use a robust
criterion function [18-19] that reduces the influence of larger residuals. The most

common robust criterion is

N
F@.9 =2 80) (6a)
where
| if|r|<c
8= {2c|r| —c* ifj>c (60)

The function g(r) transitions smoothly from a squared penalty to a linear penalty,
thereby reducing the influence of large residuals. The choice of ¢ is data dependent;

techniques for selecting it are given in [18-19].

We have demonstrated both that CCG is very effective in minimizing Eg. 4 when
Eqg. 6 is the criterion function and that this approach greatly improves image quality
in the face of outliers. We present a simulated example. The true unknown is Fig. 1,
and the resulting projection data with noise added is Fig 2. This data is in the form
of a sinogram. A sinogram is a 2-dimensional image created by displaying all the ray
sums at one angle versus all angles (projections) obtained. The noise is Gaussian
mixture: with probability .99 the noise at a data pixel is Gaussian with standard
deviation o, but with probability .01 it is Gaussian with standard deviation 1000.
Consequently, there is an outlier 1% of the time. These outliers are obvious as
speckles in Fig. 2. The reconstructed image using Eq. 5 is Fig 3; the reconstructed
image using Eq. 6 is Fig 4. Outliers caused the streaks in Fig. 3. Our robust technique
reduced the rms error between reconstruction and true object by a factor of two.

Although robust statistical methods have been applied to a variety of problems, to



our knowledge this is their first application to tomography. The effectiveness of
CCG made this possible. We have also successfully tried other robust criteria.
Although we only presented a simulated example, many tomography problems are

plagued by outliers, and this method has promise for a variety of real problems.

I.c Waste Drum Assay.

Using emission tomography to characterize mixed waste drums has been studied at
LLNL for several years [20]. An active and passive computed tomography (A&PCT)
technique has been developed that first uses an external radioactive source and
active tomography to map the attenuation within a waste barrel. This attenuation
map is used to define the matrix A for the passive or emission tomography
problem that is of interest to us here. Development of the A&PCT technique was
done with program funding, but the emission tomography part of the problem gave
us the opportunities to demonstrate the effectiveness of our techniques and to
develop them for general emission tomography problems. At each detector position
we acquire the entire gamma-ray spectrum and two counts of gamma-ray emissions
are taken. The first count is in the region of a spectral peak of the isotope of interest;
the second is in a region just outside this spectral peak. The purpose of the second
measurement is to determine the level of background radiation and remove its
effects on the first measurement. In previously developed algorithms, the net
counts due to the isotope were obtained by subtracting the second measurement
from the first. Two maximum likelihood expectation-maximization (MLEM)
algorithms were developed, UCSF-MLEM [21] and APCT-MLEM [22], and applied to
the corrected data to obtain a 3-D image of isotope activity. The sum of counts over
all of the image voxels is related to an estimate of isotope activity within the drum.

Unfortunately subtracting the two counts and then using a maximum likelihood



algorithm on the net counts is not a correct application of the likelihood principle.
Furthermore, this approach can violate physical reality because there is a nonzero
probability that a net count will be negative. The two MLEM algorithms lack the
flexibility to implement the correct log-likelihood function. Using program funding,
we derived the correct log-likelihood function [23]; as part of this LDRD project we
developed a new algorithm for the waste drum problem, APCT-CCG, and we
studied its behavior on both real and simulated data [24]. The flexibility of CCG
made implementing the log-likelihood function relatively simple: it was only
necessary to select the appropriate criterion function that accounted for Poisson
statistics and incorporated peak and background measurements at each detector
location. Fig. 5 compares applying the three algorithms to real data from known Pu-
239 sources; APCT-CCG was out-performed on only one of the seven sources.
Although the voxel sum is the most important parameter for waste drum assay, the
reconstructed image is more important for most emission tomography problems,

and APCT-CCG also did a much better job of reconstructing the image.

A test case was generated using simulated data. A simulated 3-D image was created
with three slices. Each slice is 14 by 14 voxels. A point radioactive emission source
of 30,350 counts was placed on the center slice at voxel location (5,5), i.e., just off the
center of the slice. Using the system matrix the image was forward projected to
create three sinograms. A level background equal to the maximum signal strength
was added to these sinograms. The level was carefully chosen to be consistent with
and representative of empirical data. The simulated sinograms were randomized by
passing them through a Poisson random generator. Another set of sinograms were
created with the same background level. These background sinograms were also
randomized. Both the gross and background sinograms were used as input for the

APCT-MLEM and APCT-CCG codes. The results are shown in Fig. 6. The APCT-



MLEM image is spread out over 3-by-3 voxels within each slice and across all three
slices. lIts total assay yields 36710 counts, i.e. 121% of the actual value. The APCT-
CCG results are more localized and its assay value of 9936 counts is much closer to
the original 30350 counts, i.e., within 1%. The other important observation is that
the APCT-CCG code calculated sinograms are more representative of the original
source data than the source plus background, which is not the case of the APCT-
MLEM sinogram results. We also found this to be the case for real data as shown in

ref [20].

For this problem it became obvious to us that model selection and validation are
important issues, particularly when accurate estimates of parameters (e.g., isotope
activity) are as critical as good images. In the case of Gaussian noise problems where
the squared error function is used, tomography can be viewed as a linear regression
problem. Consequently, the usual x” tests can be applied to the squared error to
measure goodness of fit and to choose between models, and the sinogram of the
residuals is a good image to observe the adequacy of a particular model. However,
this is not the case if the noise is not Gaussian. In studying the waste drum problem
we realized that statistically it can be viewed as a generalized linear model in which
there is a linear relationship between the unknown and the data, but the statistics
are not necessarily Gaussian [19,25,26]. This is basically the model we defined in the
Introduction. In this context it is possible to slightly modify L(y,X) so that it becomes
a deviance function that has the same minimum with respect to X, but exhibits
behavior that is approximately x°. Similarly, it is possible to define other sinogram
images that behave as the usual residual image does for the squared error case. We
have applied these ideas to the waste drum problem, and they will be useful for

other tomography problems as well.
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IL.d, Neutron Imaging.

LLNL is currently developing a high-energy (10 - 15 MeV) neutron imaging system
for use as an NDE tool in support of the Enhanced Surveillance Program (ESP). This
approach to tomography promises to be a powerful technique for probing the
internal structure of thicker objects that may be opaque to x rays and lower energy
neutrons. Imaging experiments using neutron radiography were conducted at the
Ohio University Accelerator Laboratory (OUAL) in FY98. The object being imaged
was a right-circular PB cylinder with an outer diameter of 4” and a 2” diameter
polyethylene insert, see Fig. 7. The insert was split into two half-cylinders with one
serving as “blank” and the other having a series of 10-, 8-, 6-, 4-, 4--mm-diameter
holes machined to depths of 0.5” into its outer (curved) surface. The areal density of
the assembly ranged from 62.38 g/cm” (along the centerline) to 99.9 g/cm” (along the
limb of the polyethylene insert). Reconstructions of this object using both filtered
backprojection and our CCG algorithm with nonnegativity constraints on the
reconstruction are shown in Fig. 6. The superiority of the CCG reconstruction is
evident. Although we used the squared error criterion with CCG, in fact all of the
raw data acquired during the OUAL experiments initially bore random sharp spikes
rising several hundred to several thousand counts above the local average. These
spikes were due to primarily to cosmic ray strikes in the CCD detector used to collect
the data. Currently these spikes are removed by preprocessing prior to applying the
tomography reconstruction algorithms. However, such data is a perfect candidate for
the robust techniques we developed on this project, and we plan to apply them to
neutron data in the near future. For a detailed description of the neutron imaging

experiments, see Ref [27]
Il.e The Advanced Hydrotest Facility.
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In the first year of this project we adapted our CCG algorithm to cone beam
tomography problems. In the second year we extensively used the resulting
algorithm, CCG_Cone, for studies of limited view reconstruction at the Advanced
Hydrotest Facility (AHF). This code has been an indispensable tool in these studies.
It has been used to study the efficacy of reconstruction as a function of number of
views, as well as how the orientation of views affects the quality of the
reconstruction. These studies have allowed the AHF design group to make
recommendations on how many views are needed, as well as where they should be
placed. Currently, program funding is paying for the continued use of CCG_Cone on
this problem. In addition, CCG_Cone has been used to study the effect of constraints
on the quality of reconstructions. It has been found that a judicious use of
constraints will help the AHF to achieve its objectives. More programmatic work

will continue in this area.

We present an example using CCG_Cone. Our object consists of seven
stacked slabs as shown in Fig. 9. Projection data, and reconstruction results
are also shown in this figure. The origin of the axes is in the center of the
middle slab. Four views are taken in the x-y plane. The angles of these
views are equally spaced and are 0, 45, 90, and 135 degrees as measured
in the x-y plane from the x axis. We used only in-plane viewing angles for
purposes of comparison with the conventional non-iterative Feldkamp
algorithm [28] that is only capable such angles. Experiments (not shown)
with CCG_Cone on this example have demonstrated the advantage of using
some out of plane viewing angles. The absorption of the slabs is arbitrarily

set to 1.0 inside the slabs and 0.0 outside.
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The large magnification and resulting large cone angle cause blurring at
the extreme angles of the projections. Orthogonal slices through the
reconstructions are displayed for both CCG_Cone and Feldkamp. Although a
color scheme is used to display the reconstruction results for both
algorithms, note that the scales for the two reconstructions are not the
same. In particular, note that Feldkamp exhibits large excursions in both
positive and negative directions. Since accurate spatial attenuation values
are required in our image recovery, this clearly demonstrates the

superiority of CCG_Cone.

IIf. Pulsed Photothermal Radiography.

In collaboration with researchers at several other institutions, we continued to apply
our optimization algorithms to the problem of pulsed photothermal radiography
(PPTR). This is essentially a tomographic method that inverts data from the time
evolution of the heat equation, rather from x-ray projection data, to see inside an
opaque object. Our work on this project contributed to obtaining the first high-
quality 3-D images of port-wine stain blood vessels [29-33]. Our CCG algorithm was
used to solve the inverse problem to get these images. Furthermore, as part of this
effort we demonstrated the feasibility of parallelizing our CCG algorithm [34]. An
example of our work is shown in Fig. 10. This figure is a 1.6 mm x 1.6 mm x .6 mm
volumetric image of in vivo port wine stain blood vessels of a human subject.
The blood vessels are approximately 100 microns in diameter and are very
well resolved. Given the highly ill-posed nature of heat equation inverse
problems, this degree of resolution is highly impressive. This imaging
technique is being used in a clinical trial at the UC Irvine Medical School to

improve the outcome of laser treatment of port wine stains.
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II1, Future Work.

In future work we plan to continue refining our algorithms and applying them to
practical problems. Immediate plans include parallelizing the algorithms,
particularly the implementations of Eq. 1; further refinements of the forward
projection model, including implementing the AHF blurring model; and further

investigations of applying the generalized linear model formalism to tomography.
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Figure Captions:

Fig. 1 Original object.

Fig. 2 Sinogram of projections of object shown in Fig. 1 with Gaussian mixture noise
added.

Fig. 3 Reconstruction from projection data in Fig. 2 using squared error criterion.
Fig. 4 Reconstruction from projection data in Fig. 2 using robust technique.

Fig. 5 Comparison of assay accuracy for three reconstruction methods.

Fig. 6 Simulated image and sinogram reconstruction.

Fig. 7 Neutron Imaging Object

Fig. 8 Reconstruction of object from neutron imaging data using filtered
backprojection and CCG.

Fig. 9 Reconstruction of seven slabs from cone beam projection data. This figure

demonstrates the superiority of CCG_Cone over the conventional Feldkamp
algorithm.
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Fig. 10 3-D Reconstruction of in vivo port wine stain blood vessels using pulsed
photothermal tomography.
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Comparison of Reconstruction Metho
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Sinograms Tomographic Images
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Lineout through image center
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